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Introduction
With respect to the rest of the Nd:glass laser system,

the frequency converter is quite small in terms of weight
and size. However, it is a critical component because laser
fusion targets re q u i re irradiation by ultraviolet laser light
to operate successfully. The frequency converter pro-
duces ultraviolet light (λ = 0.351 µm) from the infrared
light (λ = 1.053 µm) generated in the neodymium-
doped glass section of the laser.

As shown in Fig. 1, the basic frequency converter for
tripling consists of two crystals (advanced designs
have more than two crystals). The first crystal, known
as the second harmonic generator (SHG), frequency
doubles a predetermined amount of incident infrared
(1ω) light. The frequency-doubled (2ω) light has a
wavelength of 0.526 µm. The 2ω and 1ω light are then
mixed in the second crystal, known as the third har-
monic generator (THG) or mixer, to form ultraviolet
(3ω) light at a wavelength of 0.351 µm. The output of
the THG is 1ω, 2ω, and 3ω light. The proportions of
light at the three wavelengths depend on the operating
configuration and the intensity and phase of the input
laser pulse to the converter.

The goal of frequency-conversion modeling is to
produce a converter design that results in the best per-
formance for a required output laser pulse and that is
the least sensitive to operational tolerances (such as
alignment) and crystal manufacturing faults (such as
surface roughness).

A frequency converter requires precise tolerances.
Crystals must be tilted to an accuracy of microradians,
and crystal thicknesses must be accurate to millimeters
to achieve desired performance. Crystal surfaces must
also be finished to a smoothness of hundredths of a

micron so that the energy of a 3ω laser pulse will
almost completely pass through the laser entrance hole
of the hohlraum.

Frequency conversion is one example of the process
of three-wave mixing. The crystals used in frequency
converters are anisotropic, thus, frequency-conversion
modeling must take account of the directions of the
principal axes of the crystals with respect to the polar-
izations of electric fields in three-wave mixing.
Frequency conversion is optimal at a phase-matched
condition. Phase matching involves placing the princi-
pal axis of each crystal of the converter at a certain
angular separation from the propagation direction.
This angular separation, which must be accurate to
within microradians, is called the phase-matching
angle. The codes used for frequency-conversion mod-
eling calculate phase-matching angles and the varia-
tion of converter performance for departures from the
phase-matched condition. In mathematical terms,
phase matching means that the difference between the
wave number of the output harmonic field and the
wave numbers of the input harmonic fields equals
zero.

We can define the phase mismatch factor ∆k as 
follows:

∆k = 2π/λh – 2π/λf – 2π/λg  , (1)

where λ is the wavelength in the media, h denotes the
output harmonic field, and f and g denote the input
harmonic fields. Here, λ = λ0/n, where n is the index of
refraction, and λ0 is the wavelength in vacuum. The
value of n depends on the type of crystal material, the
polarization of the field, crystal orientation, the local
propagation angle of the electric field, the instanta-
neous wavelength if it is time-varying due to phase
modulation, and temperature. Modeling codes must
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take into account all these dependencies. Whereas ∆k =
0 for phase matching, as we will show later, ∆k is some-
times deliberately made nonzero in the SHG to obtain a
certain amount of red and green light for the THG.

We have developed a class of fre q u e n c y - c o n v e r s i o n
codes such that each code is diff e rentiated from the oth-
ers by the level of detail in the specification of the input
electric field E to the converter. In the most general case:

E = E(x,y,z,t,λc)  , (2)

where, x and y are the transverse spatial coordinates, z
is the coordinate in the direction of propagation, t is
time, and λc is the center wavelength.

The different codes and electric field specifications
are as follows:
1. For plane-wave steady-state fields:

E = E(z,λc)  . (3)

2. For plane-wave time-varying fields:

E = E(z,t,λc)  . (4)

3. For spatially varying steady-state fields (in three
dimensions):

E = E(x,y,z,λc)  . (5)

4. For spatially varying and time-varying fields:

E = E(x,z,t,λc) (6a)

for one transverse spatial dimension, and

E = E(x,y,z,t,λc) (6b)

for two transverse spatial dimensions.

Types of Frequency Converters
The two types of crystal material used in the fre q u e n c y

converters for Nova, Beamlet, and the National Ignition
Facility (NIF) are potassium dihydrogen phosphate
(KDP) and deuterated potassium dihydrogen phosphate
(KD*P). The crystals are of the negative uniaxial type.1

As shown in Fig. 1, each crystal can be operated in a
Type I or Type II configuration. In a Type I configura-
tion, incoming electric fields are all in one polarization
d i rection, and the output harmonic field polarization is
orthogonal to the input field’s polarization. In a Type II
configuration, incoming electric fields are orthogonal.
The crystal axes along which the incoming electric fields
a re aligned are called the ordinary (o) and the extraord i-
nary (e) axis. In the plane defined by the pro p a g a t i o n
d i rection and ordinary axis, there is no dependence of
the index of refraction on crystal tilt angle θ. In the plane
defined by the propagation direction and the extraord i-
nary axis, the index of refraction varies with crystal tilt
angle. This feature is used to adjust the phase mismatch
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FIGURE 1. Schematic of two-crystal frequency triplers. (a) Type II/Type II crystal scheme and polarization directions for tripling.
(b) Type I/Type II crystal scheme and polarization directions for tripling.     40-00-1296-2736pb01



∆k by a process called angular detuning.
In the following discussion, we denote the electric

fields involved in the three-wave mixing process by f,
g, and h. A scalar representation can be used because
each field is in one polarization, which is parallel to
either the ordinary or extraordinary axis of each
crystal. In a SHG crystal, f and g represent the 1ω
fields, and h represents the 2ω field. In a THG crystal, f
represents the 1ω field, g represents the 2ω field, and h
represents the 3ω field. In a Type I SHG, f and g are
parallel to the ordinary axis, and h is parallel to the
extraordinary axis. In a Type II THG, f and h are paral-
lel to the extraordinary axis, and g is parallel to the
ordinary axis. From these configurations and field con-
ventions, we can formulate equations governing the
evolution of fields in the converter crystals.

Equations of Frequency
Conversion

The evolution of the f, g, and h fields in a crystal
for the most general case, with f = f(x , y, z , t), g =
g(x , y, z , t), and h = h(x , y, z , t), is determined by solving
the following set of coupled, nonlinear diff e re n t i a l
e q u a t i o n s :

∂f/∂z + 1/vg1∂f/∂t = iC(θ)hg*ei∆kz – 0.5α1 f + k0[γ11f2

+ 2γ12g2 + 2γ13h2] f – i/2kf(∇
2f) – ρ f∂f /∂re , (7)

∂g/∂z + 1/vg2∂g/∂t = iC(θ)fh*ei∆kz – 0.5α2g

+ iλ1/λ2k0[2γ21f2 + γ22g2 + 2γ23h2]g

– i/2kg(∇2g) – ρg∂g/∂re , (8)

and

∂h/∂z + 1/vg3∂h/∂t = iC(θ)fge–i∆kz – 0.5α3h

+ iλ1/λ3k0[2γ31f2 + 2γ32g2 + γ33h2]h

– i/2kh(∇2h) – ρh∂h/∂re , (9)

where ∇2 is the Laplacian operator, which for Cartesian
coordinates is:

∇2 = ∂2/∂x2 + ∂2/∂y2 . (10)

We derived Eqs. (7–9) by starting with Maxwell’s
equations for a nonlinear medium. The first term on
the left side of Eqs. (7–9) is the derivative in the propa-
gation direction to be integrated. We want to calculate
the evolution of the three fields as a function of z, the
propagation direction.

The second term on the left side of Eqs. (7–9) is used

only in the conversion codes that model time-varying
electric fields.Here, vgn is the group velocity, where n
= 1, 2, 3. The group velocity is defined by the equation

vg = ∂ω/∂k , (11)

where ω = ω(k) is the dispersion relationship for a con-
verter crystal material. The use of only vg indicates that
we are using only a first-order approximation to the
dispersion relation. For the bandwidths in our model-
ing, this is an excellent approximation.

The first term on the right side of Eqs. (7–9) is the
three-wave mixing or frequency-conversion term.
(This term is included in all the types of our conver-
sion codes.) Here, C is the coupling coefficient, which
is a function of angle θ between the z axis and the prin-
cipal axis of the converter crystal. The phase mismatch
factor ∆k is in the complex exponential. A nonzero
value of ∆k degrades the conversion.

The second term on the right side of Eqs. (7–9) cor-
responds to bulk absorption, where αn denotes the
absorption coefficients.

The third term on the right side corresponds to
phase retardation arising from the nonlinear index of
refraction. Note that the phase retardation for each
field not only depends on its own intensity but also on
the intensities of the other two fields. The quantities
γmn are the nonlinear index coefficients. This term is
included in all codes with temporal-field variations
and/or spatial-field variations in at least one trans-
verse dimension. It is not needed in plane-wave,
steady-state codes because the uniform phase pro-
duced would have no effect.

The fourth term on the right side corresponds to
paraxial diffraction. This term is included in codes
w h e re the fields vary in one or two transverse
d i m e n s i o n s .

The fifth term on the right side is the “walk-off” fac-
tor, which is nonzero only if the field vector is in the
extraordinary direction. Thus, we use the notation re
for the coordinate in the extraordinary direction, which
can be x or y, depending on the crystal configuration.
The term ρ is the walk-off factor, which gives the varia-
tion of refractive index with angle θ. Walk-off accounts
for the fact that, as a field propagates in a direction dif-
ferent from the phase-matching direction, it will no
longer move with the other fields but will “walk off”
from them because the index of refraction varies with
direction.

Method of Solution
Equations (7–9) are solved by a split-step method

to give the fields as a function of x, y, z, and t (or a
subset of these variables, depending on the type of
code). In this method, the derivative of each field
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with respect to z is split into two components with
d i ff e rent terms from the right hand sides of Eqs. (7–9).
The integration for one component is carried out in the
space–time domain, and the integration for the other
component is carried out in the fre q u e n c y / s p a t i a l -
f requency domain. The terms in the equations are
divided in the space–time domain according to:
• Frequency conversion (three-wave mixing).
• Passive loss.
• Nonlinear index phase retardation.
This part of the derivative of each field with respect to z i s
integrated using a fourth-order Runge–Kutta method.

The second component, which includes the time
derivative of each field and the diffraction and walk-
off terms, is integrated by first Fourier transforming
the terms into the frequency/spatial-frequency (for x,
y) domain. After the equations are transformed, they
become ordinary differential equations in z instead of
partial differential equations in x, y, z, t. The equations
are then integrated with respect to z and inverse
Fourier transformed to give the second component of
the updated fields.

Thus, in Eqs. (12–14) below, we denote the angular
frequency as ω and the wave numbers in the x, y , and
extraordinary axes directions with κx, κy, and κe,
respectively. After Fourier transforming the time-
derivative, diffraction, and walk-off terms, the second
part of the split-step solution involves integrating:

dF/dz = –iω/vg1F + i(κx
2 + κy

2)/2kf F + iρfκeF , (12)

dG/dz = –iω/vg2G + i(κx
2 + κy

2)/2k2G + iρgκeG , (13)

and

dH/dz = –iω/vg3H + i(κx
2 + κy

2)/2k3H + iρhκeH , (14)

where F, G, and H denote the Fourier transforms of the
second part of the split-step solution of f, g, and h.
Here, κe can be either κx or κy depending on the orien-
tation (x or y) of the crystal extraordinary axis. After
Eqs. (12–14) are integrated with respect to z, the results
are inverse Fourier transformed to give the second
component of the updated fields. The two components
of the fields are then added to give the total updated
field after a z increment, ∆z.

Outputs of the Codes
Our codes have various tabular and graphics out-

puts, which are illustrated below. In addition, the spatial
and space–time codes can produce a file containing out-
put harmonic and residual harmonic field distributions,
which are compatible with the PROP92 propagation
code. With this capability, we can propagate a con-
verted beam through a set of optics using PROP92, as
well as a 1ω beam created by PROP92 as the input 1ω

field distribution for a conversion calculation.

Applications of the Frequency-
Conversion Codes

Sensitivity Study of Doubler
Detuning Angle by Plane-Wave
Codes

As previously mentioned, the frequency-conversion
crystals must be tilted with an accuracy of microradi-
ans for proper operation. This is especially true for a
Type I SHG, where angular detuning is used to contro l
the mix of 1ω and 2ω light into the THG. For design of
the converter mounting and alignment equipment, it is
important to know the alignment accuracy re q u i red for
conversion efficiency within specifications. The variation
of conversion efficiency with doubler detuning angle
can be easily determined for a wide set of converter
designs using the plane-wave frequency-conversion
codes.

Figure 2 shows the output from a plane-wave 
f requency-conversion code. The plot shows 3ω c o n v e r-
sion efficiency vs initial 1ω intensity for several values of
SHG detuning angle. The latter quantity is the identify-
ing parameter for each curve. The modeled converter
configuration consisted of a 13-mm-thick KDP Type I
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FI G U R E 2 . Output of plane-wave, steady, frequency-conversion code
showing 3ω conversion efficiency as a function of input 1ω i n t e n s i t y
for various doubler crystal detuning angles.     4 0 - 0 0 - 1 2 9 6 - 2 7 3 7 p b 0 1



SHG and a 11-mm-thick KD*P THG with a fixed
detuning angle of 30 µrad. Notice that the sensitivity of
converter performance increases with initial 1ω inten-
sity. Thus, in considering the effect of SHG detuning
angle alignment on converter performance for tempo-
rally shaped pulses, one must analyze the converter
performance at the peak intensity of the shaped pulse.
It is also important to note that conversion efficiency
can drop off drastically as 1ω intensity increases.
Decreased efficiency results from the incorrect ratio of
1ω and 2ω light into the THG. This behavior is i m p o r-
tant in the design of the dynamic range of the converter.

Effects of Applied Temporal Phase
Modulation on Conversion

When phase modulation is applied to a field, E0(z,t),
the resulting field for a single modulation frequency f
and depth of modulation σ is given by:

Epm(z,t) = E0(z,t)eiσsin2πft . (15)

The bandwidth bw over which the phase modula-
tion sweeps is given by:

bw = 2σf . (16)

As the frequency sweeps from one limit to the other,
the effective wavelength of each field also changes, which
a ffects, in turn, the phase mismatch factor [Eq. (1)]. As the
phase mismatch ∆k varies, the conversion eff i c i e n c y
varies. It is this process that turns a periodic phase modu-
lation into an amplitude modulation.

T h e re are two current uses for applied phase mod-
ulation on laser pulses. First, bandwidth is used to
s u p p ress Stimulated Brillouin Scattering (SBS) in
l a rge optics. The bandwidth used in this application
is 30 GHz. Our conversion codes show that this
bandwidth causes a small degradation in conversion

e ff i c i e n c y, which needs to be considered along with
other degrading factors.

The second application is for beam smoothing by
spectral dispersion. Plans are for 1ω bandwidths in the
range of 90 to 150 GHz. Our frequency-conversion
codes have shown that planned converter designs suf-
fer significant degradation in performance at such
large bandwidths.

In the following examples, we show how the tem-
poral codes model conversion of laser pulses having
complex time dependencies. We show the effects of
applying a 150-GHz-bandwidth phase modulation on
a laser pulse having a temporal shape like that pro-
posed for NIF indirect drive. The converter design we
used consists of a 12.7-mm-thick KDP Type I SHG and
a 9-mm-thick KD*P Type II THG.

Figure 3(a) shows the 3ω intensity temporal pulse
shape, and Figure 3(b) shows the 1ω intensity pulse
used to generate the 3ω pulse for the case with no
bandwidth. The two graphs were produced by one of
the temporal frequency-conversion codes. The peak 1ω
intensity is 2.75 GW/cm2. The energy conversion effi-
ciency was calculated to be 56.5%.

The code was then run a second time starting with
the 1ω pulse of Fig. 3(b); however, a phase modulation
with a bandwidth of 150 GHz was impressed on the
1ω pulse. Figure 4 shows the temporal profile of
intensity of the resulting 3ω pulse. The calculated
e n e rgy conversion efficiency is 43.4%. Thus, the
e n e rgy conversion efficiency relative to that of the
pulse of Fig. 3(a) d e c reases by about 13%. In addition,
the pulse has severe intensity modulation at twice the
phase modulation fre q u e n c y. The lowest intensity
values correspond to times when ∆k is largest in mag-
nitude, and the peak values correspond to the times
when ∆k = 0. These simulations show the need for
alternate converter designs for large-bandwidth oper-
ation of NIF.

One of the alternate designs is a converter with one
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FIGURE 3. Sample output 
from the temporal frequency-
conversion codes. (a) Temporal
profile of intensity of a 3ω laser
pulse with a NIF-like shape. 
(b) Temporal profile of intensity
of the 1ω pulse derived from the
pulse shape of (a) for a con-
verter consisting of a 1.27-cm-
thick KDP doubling crystal and
a 0.9-cm-thick KD*P tripling
crystal.     40-00-1296-2738pb01
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FIGURE 4. Temporal profile of intensity of the 3ω pulse produced
when the 1ω pulse of Fig. 3(b) with 150 GHz of applied phase modu-
lation is propagated through the two-crystal 1.27/0.9 converter.     
40-00-1296-2740pb01

FIGURE 5. Temporal profile of intensity of the 3ω pulse produced
when the 1ω pulse of Fig. 3(b) with 150 GHz of applied phase modu-
lation is propagated through a three-crystal converter. The KDP dou-
bler is 1.2 cm thick with a detuning angle of 210 µrad. The first KD*P
tripler crystal is 0.7 cm thick with a detuning angle of 950 µrad. The
second KD*P tripler crystal is 0.9 cm thick with a detuning angle of
–350 µrad.     40-00-1296-2741pb01

FIGURE 6. Profiles of fluence of
the initial 1ω field distribution.
(a) Center (y = 0) x profile of flu-
ence. (b) Center (x = 0) y profile
of fluence.     40-00-1296-2742pb01

e fficiency between the two-crystal design and the
t h ree-crystal design will incre a s e .

Simulations of Field Distributions
with Temporal and Transverse Spatial
Variations (x, y, z, t) Using PROP92

SHG and two THG crystals. The temporal frequency-
conversion code shows that this design produces a
much smoother 3ω pulse, as shown in Fig. 5. In addi-
tion, the calculated conversion efficiency is 53.3%,
which corresponds to a drop of only 3% relative to that
of the pulse of Fig. 3(a). For higher peak intensities
in the NIF-like pulse, the diff e rence in conversion



The PROP92 code models the propagation of laser
beams with spatial variations in one or two transverse
dimensions and a temporal variation represented in a
discrete set of time slices. With this temporal represen-
tation, it is difficult to model conversion of fields with
applied bandwidth, but it is easy to model beams with
intensity envelopes of arbitrary temporal shape and no
bandwidth. However, for small bandwidths and the
converter designs of interest for NIF, the effects of
bandwidth are small, and results from PROP92 are
quite accurate. Following is an example of the use of
the frequency-conversion code for which the fields are

functions of x, y, z, and ∆tn, where ∆tn denotes the time
slice array.

The 1ω field distribution used in this example corre-
sponds to simulation of a shot on the Beamlet laser
system in which the 1ω output fluence is 13 J/cm2 in a
3-ns temporally flat pulse. The pulse is re p re s e n t e d
by three time slices. The first slice corresponds to the
first 0.01 ns of the pulse; the second slice to the next
2.98 ns of the pulse; and the last slice to the last 
0.01 ns of the pulse. Each slice is a field distribution
defined on an x – y grid. Figures 6(a) and 6(b) show the
center x and y p rofiles, re s p e c t i v e l y, of the initial 1ω
fluence. The converter used in this example consists
of an 11-mm-thick KDP SHG detuned at 240 µrad and
a 9-mm-thick KD*P THG. The 1ω field distributions
a re propagated through the SHG. Modeled physical
p rocesses include frequency conversion, nonlinear
index phase re t a rdation, paraxial diffraction, and
w a l k - o ff .

F i g u res 7(a) and 7(b) show the center x and y p ro-
files, re s p e c t i v e l y, of the 2ω fluence distribution. The
SHG energy conversion efficiency was calculated to
63.37%. This value is determined by the internal
detuning angle, which is set as close as possible to
p roduce equal intensities of 1ω and 2ω light into the
SHG. Because the fields are spatially varying, only a
few grid points of the beams will meet the equal-
intensity condition for a specified detuning angle.
Note that the 2ω fluence modulation is almost identi-
cal in shape to the 1ω fluence modulation, indicating
that intensity dominates the conversion process. This
result is expected because the phase profiles from the
PROP92 calculation indicate only small transverse
gradients. However, with large, local transverse phase
gradients (which do not apply in the present exam-
ple), the walk-off term can become large and affect fre-
quency conversion.

Figure 8 shows the 2ω energy in the doubler crystal
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FIGURE 7. Profiles of fluence of
the 2ω field distribution at the
output of the doubler crystal.
(a) Center (y = 0) x profile of flu-
ence. (b) Center (x = 0) y profile
of fluence.     40-00-1296-2744pb01

FI G U R E 8 . 2ω e n e rgy as a function of distance into the doubler crystal.
40-00-1296-2746pb01



as a function of distance z into the crystal. Note the
slight rollover in the curve at the end of the crystal,
which indicates that the detuning angle was not quite
at the value for optimum conversion.

Figures 9(a) and 9(b) show the center x and y pro-
files, respectively, of 3ω fluence. Once again, the modu-
lation is almost identical to that of the 1ω fluence
profiles, indicating that conversion is determined
mainly by the intensity distributions of the fields and
not by their phase distributions. Calculated 3ω energy
conversion efficiency is 88.38%. Figure 10 shows the 3ω
energy as a function of distance into the tripler crystal.
The 3ω field distributions calculated by this code can
be used as input to PROP92 to model propagation of
the 3ω beam in the output section of Beamlet and NIF.
The output section extends from the output of the fre-
quency converter to the output of the final focusing lens.

Summary
Frequency conversion is a complex nonlinear pro-

cess requiring precise tolerances for optimum results.
The newly developed frequency-conversion codes
have aided the designers of Beamlet and NIF in 
specifying the correct converter designs needed for a
variety of operating scenarios.
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FI G U R E 1 0 . 3ω e n e rgy as a function of distance into the tripler crystal.
40-00-1296-2749pb01

FIGURE 9. Profiles of fluence of
the 3ω field distribution at the
output of the tripler crystal. 
(a) Center (y = 0) x profile of flu-
ence. (b) Center (x = 0) y profile
of fluence.     40-00-1296-2747pb01


